
IN late 2013, an international team of scientists was in the
 midst of simulating a collapsing cloud of 15,000 bubbles

using Lawrence Livermore’s Sequoia supercomputer, when the
calculations suddenly stopped. In quick response, the team turned
to a Livermore software tool called STAT (Stack Trace Analysis
Tool) to locate which of more than 6 million computing threads
(calculations) was causing the problem. Within a few minutes,
STAT traced the hangup to a particular microprocessor core
(computing engine). The team went on to complete the pioneering
simulation and win the 2013 Golden Bell Prize for outstanding
achievement in high-performance computing (HPC). (See S&TR,
January/February 2014, p. 20.)

STAT is the product of a small team of computer scientists
comprising the Development Environment Group (DEG) in
Livermore’s Computation Directorate. In addition to
STAT, the group has developed tools designed
to boost performance and productivity such as
AutomaDeD and SPINDLE. Another set of tools

is being developed under the PRUNER project to help with the
reproducibility of large simulations. The group works closely
with the Laboratory’s Center for Applied Scientific Computing,
which supports the demanding computing requirements of
Livermore scientists.

The group’s tools are designed to work on massively parallel
machines such as Sequoia, one of the world’s most powerful
supercomputers. Sequoia has 1,572,864 processing units, or cores,

Supercomputing Tools Speed SimulationsSupercomputing Tools Speed SimulationsSupercomputing Tools Speed SimulationsSupercomputing Tools Speed SimulationsSupercomputing Tools Speed SimulationsSupercomputing Tools Speed Simulations

 Research Highlights

15Lawrence Livermore National Laboratory

Lawrence Livermore scientists and collaborators set a new

supercomputing record in fluid dynamics by resolving unique

phenomena associated with a cloud of collapsing bubbles. The

work earned the team the 2013 Gordon Bell Prize. See the

simulation at http://www.youtube.com/watch?v=zfG9soIC6_Y.

(Image courtesy of Petros Koumoutsakos zVg/CSE Laboratory,

Swiss Federal Institute of Technology Zurich.)

S&TR July/August 2014HPC Tools

16 Lawrence Livermore National Laboratory

and a peak performance speed of 20 petaflops
(quadrillion floating-point operations per second).
This processing power is compressed into
96 racks, each the size of a large refrigerator.
(See S&TR, July/August 2013, pp. 4–13.)

Massively parallel supercomputers break
a problem into tiny parts that are solved
simultaneously. For many applications, such
as simulating complex physical phenomena, this
computer architecture has replaced vastly slower
serial processing, in which tasks are performed
sequentially by a single processing element. The
Laboratory has been a leader in using parallel
supercomputers since their inception. As a result,
advanced simulations at Livermore have become
as important to scientific exploration as theory
and experiment.

According to computer scientist and DEG
member Dong Ahn, developing tools for
supercomputers requires expertise that resides
in just a few research centers worldwide. This
expertise includes skills in programming and
debugging massively parallel supercomputers as
well as anticipating the tools needed for next-
generation machines, on which applications are
expected to routinely use millions of processors.
As parallel supercomputers become more
powerful, Livermore computer scientists develop
new methods to maximize the potential of such machines. Says
Ahn, “Livermore is an applied laboratory, and our research must
have practical value to users.”

Debugging Six Million Calculations
Many of DEG’s tools focus on finding bugs. In the world

of parallel computing, debugging has become a difficult and
complex task. A massively parallel application is a big search
space in which errors can reside. Sequoia has nearly 1.6 million
cores, each running four threads of execution (calculations). Often
bugs emerge only at large scales, overwhelming users with the
complexity of the task to isolate the problem. “If something breaks,
we need to know quickly what went wrong in one or more of
6 million threads,” says HPC systems engineer Adam Bertsch. “We
also need to know why it went wrong.”

“Many traditional debugging techniques are precluded by the
sheer amount of resources that must be examined,” says computer
scientist Scott Futral, DEG leader and along with Bertsch, member
of the Gordon Bell Prize–winning simulation team. Because
Livermore applications are continually refined, developers can

spend 25 percent or more of their time debugging and optimizing
codes, a practice that has become increasingly costly.

In response to the need for an advanced debugging tool aimed
at machines such as Sequoia, DEG members collaborated with
researchers from the University of Wisconsin and the University of
New Mexico to design STAT. This highly scalable tool is capable
of identifying errors in computer codes running on machines
with more than 1 million processor cores. In 2011, STAT won an
R&D 100 Award as one of the year’s top innovations. (See S&TR,
October/November 2011, pp. 14–15.)

STAT is used throughout the Department of Energy’s
supercomputer community. It is most effective for diagnosing
calculations that are “hung up,” although the tool has also
proved useful for isolating other problems. STAT indicates

This computer screen shot shows how the STAT tool analyzed

542,288 calculations. STAT formed a graphical “tree” representing a

snapshot of an application that was hung up. The tree revealed the

problem was in a single calculation (on the right, in blue) and resulted

from a programming error.

S&TR July/August 2014 HPC Tools

17Lawrence Livermore National Laboratory

processes according to their relative progress. This work
involves developing and rapidly detecting problems when system
performance deviates statistically from the model. AutomaDeD
creates probabilistic behavioral models of how simulations should

where in the code all of the processes are at a given point in
time, giving the user insight into where the bug may lie. With a
strong graphical user interface, STAT produces two-dimensional
(2D) and 3D graphs in the form of treelike structures. The 2D
tree represents a single snapshot of the entire application, while
the 3D tree presents a series of snapshots from the application
captured over time.

STAT played a significant role in validating Sequoia as racks
of nodes were added over several months. “As we added racks,
we had the opportunity to prove STAT’s scalability,” says Ahn.
The tool helped both early users and system integrators of Sequoia
to quickly isolate errors, including issues that manifested only
at extremely large scales. In one case, STAT rapidly diagnosed a
deadlock in a simulation using over 500,000 cores, allowing the
user, who had tried unsuccessfully for weeks to solve the problem
using a traditional method, to complete his project on schedule.

For the simulation project that earned the Gordon Bell
Prize, STAT helped researchers achieve an ultrahigh-resolution
simulation of cloud cavitation collapse. That work set a simulation
record in fluid dynamics with 14.4 petaflops of sustained
performance. When the calculation suddenly stopped, recalls
Bertsch, STAT quickly scanned all 6 million calculations and
isolated a problem in one of the processor cores. The team replaced
the processor that contained the identified core, and the application
was able to proceed. The resulting simulation represented a
150-fold improvement over previous simulations for this type of
application and a 20-fold reduction in time to complete the task.

Although it has proven itself many times, STAT is considered a
“lightweight” tool that may not always locate a bug if the problem
is something other than a hung calculation. For this reason, the
group has extended STAT’s debugging features with the DysectAPI
tool. Still in early testing, DysectAPI is designed to enable users
to “program their intuition” so as to construct various higher level
debug queries. The tool represents a new approach to debugging
a computer program that runs on more than 100,000 processors.
The method screens out unnecessary information to allow the user
to rapidly zero in on the cause of a crash, fault, or other bug. Ahn
says that one could use STAT to first perform a “triage” to locate
the general area of the problem and then apply the DysectAPI tool
to pinpoint the problem.

Increasing Computational Efficiency
DEG experts have also developed AutomaDeD, a tool that

uses artificial intelligence to automate the debugging process
for massive simulations. AutomaDeD has two major functions:
identifying abnormal computational tasks and regions of
code, and finding the least-progressed task. The first function
is accomplished by detecting outliers and the second by ordering

Distributed analysis

State 1

State 4

State 1

State 2

State 3

State 4

State 1

State 2

State 3

State 4

Application

Task 2 Task NTask 1

MPI calls interception

Progress dependence
analysis

Outlier detection
(clustering)

State 2

State 3

The AutomaDeD tool uses artificial intelligence to go beyond STAT and

automate debugging when hundreds of thousands of tasks are being

performed simultaneously. Message passing interface (MPI) is used by

Livermore’s Sequoia and other massively parallel supercomputers to pass

information among the machine’s hundreds of thousands of computing

engines or cores. AutomaDeD identifies abnormal computational tasks and

malfunctioning regions of code by detecting outliers (bottom left) as well as

the least-progressed tasks (bottom right).

S&TR July/August 2014HPC Tools

18 Lawrence Livermore National Laboratory

(CORAL) national laboratories will deliver these machines.
Livermore’s system will join Sequoia in serving the National
Nuclear Security Administration’s Advanced Simulation and
Computing Program in support of nuclear stockpile stewardship.
The next-generation system will perform up to 200 peak petaflops,
about 10 times faster than Sequoia’s 20 petaflops.

CORAL represents an important step toward the long-awaited
exascale (extreme scale) systems. Ahn says that although
supercomputer simulations are used in virtually every research
area at Lawrence Livermore, many scientific challenges require
computing at the exascale (1018 flops). These exascale systems,
which are likely to debut at Livermore and other Department of
Energy national laboratories early in the next decade, will deploy
millions of processing elements or cores. Because of their size,
simulations run on exascale machines will present challenges in
diagnosing both software and hardware faults, problems to which
traditional methods and tools are unsuited.

Ahn emphasizes the role played by academic partners, including
the University of Wisconsin and the University of New Mexico
for STAT; the Technical University of Denmark for DysectAPI;
Purdue University for AutomaDeD; the Jülich Supercomputing
Centre in Germany for SPINDLE; and the University of Utah for
PRUNER. In the same collaborative spirit, all supercomputing
tools developed at Livermore are open source, meaning anyone can
use them and are invited to improve them.

With an eye on the fast-changing supercomputer future,
Livermore computer scientists are preparing for new generations
of giant machines. In particular, the onset of extreme computing
may require equally extreme software tools, but Ahn and his
colleagues are confident those tools will be in hand.

—Arnie Heller

Key Words: AutomaDeD, debugging, DysectAPI, exascale, Gordon
Bell Prize, high-performance computing (HPC), PRUNER, Sequoia,
SPINDLE, STAT (Stack Trace Analysis Tool).

For further information contact Dong Ahn (925) 422-1939

(ahn1@llnl.gov).

work. When a failure occurs, these models are analyzed to find the
origin of the failure.

SPINDLE, another tool from DEG, addresses problems that can
occur when millions of cores simultaneously open an application
consisting of thousands of shared libraries. The tool builds a cache
server to quickly send data from the libraries to the compute nodes.
Ahn explains that many applications retrieve libraries of code
and data that are shared by every processor, which can greatly
slow down processing. SPINDLE’s novel approach to loading
coordinates simultaneous file system operations so that the file
system does not become a bottleneck. This tool is an example
of middleware infrastructure, which sits “on top” of system
software. SPINDLE has proven to be highly scalable. In one test,
system performance at 64 nodes without SPINDLE was similar
to system performance at 1,280 nodes with SPINDLE—a 20-fold
improvement.

DEG scientists, in collaboration with the University of Utah,
are also studying the reproducibility of large simulations under
a project called PRUNER. This work is focused on obtaining a
fundamental understanding of simulation failures that occur
only occasionally, or seemingly without a pattern, and then
developing tools to detect and remedy them. Ahn says it may
seem counterintuitive, but when a large supercomputer duplicates
the same long string of calculations, it can occasionally give
slightly different results, or failures can occur such as a crash.
This so-called nondeterminism is often the bane of parallel
software development, and it can be costly to fix. Many sources
of nondeterminism exist such as the sheer scale of computing, a
programmer’s assumptions, and the order in which calculations are
performed. Under the PRUNER project, tools are being developed
to detect, control, and eliminate sources of nondeterminism.
“These tools would be helpful in validating programs,” says Futral.

Anticipating CORAL
The group is already anticipating the next generation of

massively parallel supercomputers, scheduled to appear in 2017.
A collaboration of Oak Ridge, Argonne, and Lawrence Livermore

